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Abstract. In modern science, computer models are often used to understand
complex phenomena and a thriving statistical community has grown around
analyzing them. This review aims to bring a spotlight to the growing preva-
lence of stochastic computer models—providing a catalogue of statistical
methods for practitioners, an introductory view for statisticians (whether fa-
miliar with deterministic computer models or not), and an emphasis on open
questions of relevance to practitioners and statisticians. Gaussian process sur-
rogate models take center stage in this review, and these, along with several
extensions needed for stochastic settings, are explained. The basic issues of
designing a stochastic computer experiment and calibrating a stochastic com-
puter model are prominent in the discussion. Instructive examples, with data
and code, are used to describe the implementation of, and results from, vari-
ous methods.
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1. INTRODUCTION

Computer models, also known as simulators, are in use
everywhere. These are programs which describe and ap-
proximate a process of interest. The code typically takes
a set of inputs and produces some output. Stochastic sim-
ulators, unlike deterministic ones, can produce a differ-
ent output even with the same inputs due to the presence
of random elements.1 Such computer models are in wide
use. For example, agent-based models (ABMs) deal with
large populations of individuals, where specific actions
taken at each time-step are to complex for deterministic
modeling. ABMs are prevalent (Johnson, 2010, Johnson
and Briggs, 2011, Ramsey and Efford, 2010, Smieszek
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1This terminology can have different meanings and connotations in
different fields. In weather modeling, a stochastic simulator might re-
fer to a random weather generator (Richardson, 1981, Peleg et al.,
2017). In this work, we use the term to refer to any code that includes
(pseudo-) random elements in generating output.
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et al., 2011, Grimm et al., 2006) and used to explore
complex phenomena in sociology, transportation, ecol-
ogy, epidemiology and other fields.

The following is a basic model of a stochastic simulator
experiment. If the code is run at a (vector) input x produc-
ing a (scalar) output y(x), this could be represented as

(1.1) y(x) = M(x) + v, v ∼ N
(
0, σ 2

v (x)
)
,

where M(x) is the expected value, E[y(x)], of the output
and v is independent variability representing the random-
ness of the simulator. Its variance, σ 2

v , can depend on x,
but constant variance is also possible. For deterministic
simulators, σ 2

v = 0.
Randomness in stochastic simulators invariably re-

quires many simulations, which limits the complexity
(including the size of the input dimension) that can be
effectively analyzed. The prospect of replicated runs in
stochastic simulators introduces a trade-off between repli-
cation and exploration, a challenging design issue. Anal-
ysis is also harder when the noise, v, has nonconstant
variance. This article examines these basic issues, identi-
fies accessible and effective methods, and points to unre-
solved questions that should be addressed.

Equation (1.1) is often used to model physical experi-
ments, where an observation y(x) is the truth, M(x), plus
measurement error (and, possibly, intrinsic variability as
well), or for an observational study, where M(x) is fit to
the observations with residual variance. Because they are
structurally the same, physical experiments can be ana-
lyzed with the same methods used for stochastic simula-
tors (Gao, Sacks and Welch, 1996). However, the contexts
and goals are often different, leading to different problem
formulations and different interpretations of results.

The choice of method, with its assumptions and limita-
tions, is crucial for any experiment. A desire for simplic-
ity, and availability of software, would encourage the use
of a standard statistical regression model (e.g., linear re-
gression) for M with a constant σ 2

v . This approach can be
effective under some circumstances, especially when the
space, X, of possible inputs is small, which begs the ques-
tion of how reliable it can be as a general prescription.
Complex systems modeled by a simulator rarely allow for
such simplification. The methods described in this review
allow the simulated data to guide the choice of model un-
der general conditions with little or no simplification.

Statistics (Sacks et al., 1989, Kennedy and O’Hagan,
2001) and Applied Mathematics (Sullivan, 2015) play
prominent roles in the design and analysis of determin-
istic computer experiments. Unsurprisingly, some meth-
ods developed for deterministic simulators have modifi-
cations that can be used in the stochastic context. Alter-
natives, driven by the stochasticity, are necessary in many
contexts. These structural differences will be noted in the
narrative below.

1.1 Goals

We have three primary goals; all related to the cross-
disciplinary nature of this topic.

One goal is to bring effective statistical methods to the
attention of subject scientists and enable a deeper under-
standing of stochastic simulators in use. The descriptions
below of statistical tools used (or cited) try to avoid being
bogged down in mathematical intricacies. Some details of
individual methods are included to help in understanding
the strengths and weaknesses of the methods. Application
of a number of methods is exemplified on testbed cases
(Section 2), and available software for methods are iden-
tified where possible.

A second goal is to familiarize statisticians with an area
of major importance that is crucial to the formation of
evidence-based policy. Statisticians are sorely needed in
the study and application of agent-based models (ABMs)
and stochastic simulators in general. Researchers familiar
with deterministic simulation techniques will see imme-
diate opportunities, but statistical expertise of all kinds is
essential to advance the study of stochastic simulators.

The analysis of stochastic simulators is a developing
field with many unsolved problems. Challenges are of-
ten driven by the scale of the problems and a range of
issues whose resolution requires close cooperation be-
tween statisticians, subject scientists and computer scien-
tists. A third goal of this paper is to spur that process.

The review is structured as follows: Section 2 briefly
outlines the simulators used as examples throughout. Sec-
tion 3 describes the models that form the basis for the
analyses. Section 4 is devoted to the fundamental ques-
tion of what simulator runs to make. Section 5 addresses
a common objective of simulation experiments: calibra-
tion. Section 6 discusses other models and objectives that
are important, but are more on the “boundaries” of this
review and are therefore less detailed. Finally, Section 7
summarizes conclusions and poses unanswered questions.
The references here do not cover the entire body of work
on stochastic simulators but, together with this overview,
should provide adequate coverage of the problems dis-
cussed.

2. EXAMPLE SIMULATORS

Three stochastic simulators will be discussed through-
out this review to aid understanding. Two are deliberately
simplified and used to exhibit key features of the meth-
ods presented. In some cases, simpler strategies could be
equally effective because the complexity of the models
has been greatly reduced; the demonstration purpose is
the one that is relevant in the discussion and reported com-
putations.

The third is a model which we use to anchor and mo-
tivate methods. The specific model in question is an epi-
demiological model developed in response to the Ebola
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epidemic of 2014. For the Ebola model, a synthetic pop-
ulation representing the individuals in Liberia (popula-
tion ∼ 4.5 million) and their activity schedules, inducing
a time-varying contact network of individuals and loca-
tions, was developed (Mortveit et al., 2015), and paired
with an agent-based model (Bisset et al., 2009). Together,
this ABM models a contagion spreading from one indi-
vidual to another in Liberia. Since the parameter for con-
tagion, transmissibility, only controls the probability of
infection for a given interaction, this model is stochastic.
The model is updated daily, with the progress of the dis-
ease determined by the activity schedule, contact details,
and other epidemiological characteristics. This model is
complex, with high dimensional outputs, multiple un-
known inputs and nonnormality all present. The analysis
performed by Fadikar et al. (2018) tackles all of these us-
ing ideas discussed within this article (see Sections 3.3.1,
3.4 and 5).

2.1 Fish Capture–Recapture

The first simplified stochastic simulator we consider
mimics the movements and schooling behavior of fish in a
mark-recapture application. Mark and recapture involves
capturing a sample of the population, marking and releas-
ing them and following up by capturing another sample
and counting how many are marked—the “recaptured.”
The number recaptured allows estimation of the popula-
tion size (Begon et al., 1979).

This process can be modeled by initializing a popu-
lation of fish at random locations in a 2-d, rectangular
lake with boundary conditions. The fish begin moving
and schooling according to simple, agent-based rules. Af-
ter an initial period of time, 100 fish are marked as they
pass through a “net” in the lake. After a second period of
time, 100 fish are captured using the same net and the
number of “recaptured” are recorded. This agent-based
model is a modified version of the flocking model devel-
oped in NetLogo (Wilensky, 1999). The collective behav-
ior that emerges in the flocking model is the result of pro-
viding each individual agent with the same set of simple
rules (Reynolds, 1987). The flocking model is modified
to include the mark-recapture dynamics described above.
Given an observed count of recaptured fish, this model
can be used to estimate the total size of the fish popula-
tion (see Section 5.3). The only input considered is the
number of fish in the total population and the output is
the number of recaptured fish. Other inputs for this model
control the individual movement rules of the fish; for sim-
plicity, these are ignored here and set to default values.
The supplementary code and compiled Rmarkdown doc-
uments, corresponding to our analysis of this simulator
can be found at https://github.com/jhuang672/fish. Run-
ning the simulator afresh will require the installation of
NetLogo from https://ccl.northwestern.edu/netlogo/.

2.2 Ocean Circulation

The second simplified example is a stochastic simulator
that models the concentration of oxygen in a thin water
layer (around 2000 m deep) in the South Atlantic ocean
(McKeague et al., 2005, Herbei and Berliner, 2014). The
physical model is described via an advection-diffusion
equation (equation (4) of McKeague et al., 2005), that is,
a nonlinear partial differential equation (PDE) describing
the dynamics of oxygen concentration in terms of the wa-
ter velocities and diffusion coefficients. For a given set
of inputs, the solution of the advection-diffusion equa-
tion is not available in closed form. However, using the-
oretical results (Feynman, 1948, Kac, 1949), the solution
can be closely approximated through an associated ran-
dom process (Herbei and Berliner, 2014). For a specific
location within the domain, random paths of the process
are generated, producing noisy outcomes that approxi-
mate the solution to the PDE at that location. This ex-
ample is simplified by taking the oxygen concentration
output to only depend on four inputs: two unknown dif-
fusion constants (Kx and Ky) and the two location vari-
ables (latitude and longitude). All other inputs are held
fixed at nominal values. Such stochastic approximations
are numerous in physical sciences, either due to com-
putational limitations, a lack of complete understanding
of the underlying system or because the system under
study is itself believed to be random. The supplemen-
tary code and compiled Rmarkdown documents, corre-
sponding to our analysis of this simulator can be found
at https://github.com/Demiperimetre/Ocean.

3. STATISTICAL MODELS

An experiment involving running a simulator and pro-
ducing data whose output is described by equation (1.1)
can have a multitude of goals. A principal objective, and
the one we focus on here, is using the simulated data to
predict values of the simulator, M(x) + v, and the un-
certainties of these predictions, at untried xs in a con-
text where getting new runs of the simulator is expen-
sive. When M is believed to be “simple” (e.g., a poly-
nomial function of the coordinates of x) there are many
standard “classical” techniques that can be used to ap-
proximate M . For example, linear regression models and
generalised linear models have been used by Andrianakis
et al. (2017) and Marrel et al. (2012). Complex problems
such as those in Section 2 are less easily managed: speci-
fying a functional form for complex M requires sufficient
prior knowledge or a huge abundance of data, both of
which are often lacking. This article focuses on methods
which can flexibly represent M .

There are a range of factors that need to be taken into
account before choosing a statistical model (hereon re-
ferred to as a surrogate model, as it acts as a surrogate for
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the computer model). In addition to methodological as-
sumptions, it is important to consider the “context,” that
is, the conditions of the particular problem being studied.
Some important contexts include:

• The space of inputs is usually a hyper-rectangle: each
coordinate of an input x is constrained by upper and
lower bounds. Section 2.2 simplifies issues by taking a
rectangular input space even though the Atlantic Ocean
is not rectangular.

• The output y in equation (1.1) is scalar, but multiple
output, such as time series, is also common.

• Some inputs may be categorical rather than numerical.
• The probability distribution of the variability, v, is often

taken to be normal, which is sometimes invalid (as with
the Ebola model).

Stretching back to Sacks et al. (1989) and Currin et al.
(1991), a vast literature, mostly on deterministic simula-
tors, has found that Gaussian Processes (GPs) produce
flexible, effective surrogates for M . This approach, and
modifications needed to address the variability v, can
be effective for stochastic simulation (Kleijnen, 2009,
Kleijnen, 2017) and will be apparent below. A thorough,
intuitive, explanation (for deterministic computer models)
can be found in O’Hagan (2006). More technical descrip-
tions of GPs from a statistical perspective can be found in
Santner, Williams and Notz (2018) and Gramacy (2020);
for a machine learning perspective, see Rasmussen and
Williams (2006). In brief, the use of GPs allows com-
puter model runs to play the key role in selecting a surro-
gate and assessments of its uncertainty in prediction. Deep
learning methods, such as neural networks, are also in
wide use. These methods can struggle to produce accurate
uncertainties estimates (important for simulation experi-
ments), but there is active research directed towards this
end (Neal, 1996, Graves, 2011, Welling and Teh, 2011,
Papamakarios et al., 2019, Gal and Ghahramani, 2016,
Lakshminarayanan, Pritzel and Blundell, 2017).

3.1 Gaussian Process Surrogates

Suppose that the input space X is a hyper-rectangle in
d-dimensions; the output y(x) is univariate (scalar); and
the variability is normally distributed. Additionally, as-
sume:

A1 The variability, v, has constant variance σ 2
v

A2 The mean M(x) = μ + Z(x)

A3 μ is constant
A4 Z(·) is a Gaussian process on X with mean 0 and

covariance function K , deconstructed as a product of a
variance σ 2

Z and a correlation function C.

The technical definition of a GP (Assumption A4)
is: for any finite N and collection of inputs XN =

(x1, . . . , xN), ZN = (Z(x1), . . . ,Z(xN))� is a multivari-
ate normal random vector with mean 0 and N ×N covari-
ance matrix KN , whose entries are K(xi, xj ). It follows
that the simulator output, YN = (y(x1), . . . , y(xN))�, is
also multivariate normal but with mean μ1 and covari-
ance matrix KN + σ 2

v IN , where IN is the identity N × N

matrix and 1 is the N -vector of 1s.
A simpler interpretation is that these assumptions de-

scribe a prior distribution for all possible functions for
the mean M . Different choices for the GP allow for dif-
ferent classes of possible M ; the power of a GP is that
these classes can be big enough to allow for all reasonable
possibilities. After specifying μ, K , and σ 2

v , a Bayesian
analysis can then be carried out, resulting in a posterior
distribution for all the functions that can still represent M

after accounting for the observed simulator runs.
Another interpretation of M and Assumptions A2 and

A4 is to think of M as a random function, with μ be-
ing a regression function (as in linear regression), and the
GP for Z modeling local divergences from μ. Both for-
mulations have the same mathematical structure but with
slightly different interpretations.

The predictive distribution for any new run, y(xnew),
given the observed simulator data {XN,YN } is also
normal, and has a known analytical form. The mean
μN(xnew) and variance σ 2

N(xnew) of predictions are

μN(xnew)

= μ + kN(xnew)�
(
KN + σ 2

v IN

)−1
(YN − μ1),

(3.1)

σ 2
N(xnew)

= σ 2
v + σ 2

Z

− kN(xnew)�
(
KN + σ 2

v IN

)−1
kN(xnew),

(3.2)

with kN(xnew) denoting the N -vector (K(xnew, x1), . . . ,

K(xnew, xN))� of covariances between the desired pre-
diction and observed data. Once the correlation function
C is specified, the parameters (μ, σ 2

Z , and σ 2
v ) can be es-

timated from the data. C is often specified to also contain
parameters, θ , which can be estimated, thereby tailoring
C to observations. One example for C is the squared-
exponential correlation function (also known as the Gaus-
sian kernel):

(3.3) C(x,w) = exp

{
−

d∑
j=1

(xj − wj)
2

θj

}
.

This correlation function is suited for approximating very
smooth, infinitely differentiable, functions. Alternative
correlation functions exist and are used; one commonly
used alternative is the Matérn 5/2 correlation function
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FIG. 1. Fish example: Predictive means and 95% uncertainty intervals for the fish model using homGP and hetGP. Data are 400 simulator runs,
consisting of 20 replicates at 20 different population sizes (a maximin Latin hypercube scaled to [150,4000], rounded down to nearest integers). The
left panels use homGP—the solid red line is the median of the predictive distribution and the dashed red-lines form the 95% uncertainty intervals.
The right panels use hetGP. The upper panels include the data used to fit the surrogates; the lower panels omit the data but include the “true”
values in black.

(Stein, 2012), which is appropriate for approximating
less-smooth functions (only 2 derivatives).2

With a choice of C and Assumptions A1–A4, the like-
lihood of the observed output is available and maximum

likelihood estimates (MLEs) μ̂, σ̂ 2
v , σ̂ 2

Z and θ̂ can be cal-
culated. Henceforth, μN(xnew) and σ 2

N(xnew) will be used
to denote the mean and variance of the predictive distribu-
tion even when the parameters in equations (3.1) and (3.2)
are estimated. The predictive probability distribution for
the computer model output y(xnew) is then

(3.4) y(xnew) ∼ N
(
μN(xnew), σ 2

N(xnew)
)
.

A complete assessment of uncertainty is lost by plugging
in estimated parameters without accounting for their un-
certainty. Accordingly, the predictive variance, σ 2

N(xnew),
obtained this way is called the plug-in (or nominal) pre-
dictive variance. The alternative of a full Bayesian analy-

2The Matérn 5/2 can be written as

d∏
i=1

(
1 +

√
5|xj − wj |

θj
+ 5|xj − wj |2

3θ2
j

)
exp

(
−

√
5|xj − wj |

θj

)

and is the product of d one-dimensional covariance functions. Further
discussion of the features of different kernels can be found in Chap-
ter 4.2 of Rasmussen and Williams (2006), Chapter 2.2 of Santner,
Williams and Notz (2018) or Chapter 5.3 of Gramacy (2020).

sis to estimate the parameters can be computationally im-
practical in many circumstances, though not impossible
(intermediate schemes and approximations have proven
to be useful, e.g., Spiller et al., 2014).

For the correlation function in equation (3.3), and for
others such as the Matérn 5/2, the correlation between
Z(x) and Z(w) depends only on x −w, the difference be-
tween the two vectors of inputs. That is, Z is assumed to
be a stationary GP (and, consequently, so is y). For func-
tions exhibiting markedly different behavior in one region
of input space than in another part, stationarity is prob-
lematic. This issue is tackled and discussed in Gramacy
and Lee (2008), Ba and Joseph (2012), Kersaudy et al.
(2015) and Chen et al. (2016), among others, and Sec-
tion 6.1 discusses one solution.

Despite the fairly complex mathematical expressions
above, Gaussian processes are easily accessible thanks to
numerous available packages (e.g., DiceKriging in R
(Roustant, Ginsbourger and Deville, 2018), the hetGP R
package (Binois and Gramacy, 2018) mentioned later, and
the GaussianProcessRegressor function from scikit-
learn in Python (Pedregosa et al., 2011)). In general, a
GP is a flexible method for estimating the mean M(x) of
the simulator output, even with a lack of prior knowledge.
This is illustrated in the top panels of Figures 1 and 2, but
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FIG. 2. Ocean example: Predictive mean and standard deviation surfaces for the ocean model output using homGP and hetGP. Data are 1000
simulator runs consisting of 20 replicates at 50 different input locations from (a maximin Latin hypercube of size 50 in 2 dimensions). The top
row provides predictive means, μN , and the bottom gives standard deviations, σN , of the predictive distribution of oxygen concentration. The left
column uses homGP, the right uses hetGP.

we first introduce a vital modeling twist to cope with a
common feature of stochastic computer simulations.

3.2 Heteroscedastic GP Surrogates

The constant variance Assumption (A1) simplifies the
construction of a statistical model because only one intrin-
sic variance parameter σ 2

v needs to be estimated. When
σ 2

v (x) is believed to vary over the input space more
must be done. Boukouvalas, Cornford and Stehlík (2014)
model σ 2

v (x) as exp(h(x)) for simple functions h (e.g.,
polynomials), a simple extension to assuming just one
variance parameter σ 2

v (the exponential transform ensures
positivity of the variance). Like analogous approaches to
predicting the mean (briefly discussed in Section 3.1), it
is not clear what to use for h, and its simplicity may not
meet the complexities found in many applications.

GPs are used for σ 2
v by several authors (Goldberg,

Williams and Bishop, 1997, Kersting et al., 2007,
Boukouvalas and Cornford, 2009, Ankenman, Nelson and
Staum, 2010, Binois, Gramacy and Ludkovski, 2018).
The difficulty is that doing so directly depends on know-
ing the value of σ 2

v (x) at the inputs Xn, but these values

are not observed. If there are enough replicated simula-
tion runs, ri , at the inputs xi , then the sample variances
at the xis can be used to estimate the σ 2

v (x) at the in-
puts Xn. Equations (3.1) and (3.2) can then be used to
predict σ 2

v (xnew) (working with the logarithm of the sam-
ple variances and then exponentiating the results to avoid
negative variance predictions). But this approach, called
stochastic kriging (SK, Ankenman, Nelson and Staum,
2010), is limited by the need for many replicates at each
input and the possible inefficiency of treating the variance
and mean processes separately.

Those limitations can be removed by considering the
intrinsic variances at the inputs, (σ 2

v (x1), . . . , σ
2
v (xn)), as

unknown parameters (a.k.a., latent variables) to be esti-
mated in the same manner as all the other unknown pa-
rameters. Goldberg, Williams and Bishop (1997) do so
in a fully Bayesian, but computationally taxing, way. Re-
ducing these costs forms the essence of approaches by
Kersting et al. (2007) and Boukouvalas and Cornford
(2009). A recent variant, proposed in Binois, Gramacy
and Ludkovski (2018), along with accessible software
hetGP (Binois and Gramacy, 2018), tackles the compu-
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tational hazards and is the method described and used in
this review.

The technical details addressing the computational bar-
riers of a heteroscedastic GP (hetGP) have three elements.
One, hetGP models the log variances as the mean out-
put of a GP on latent (hidden) variables. The second uses
Woodbury matrix identities (Harville, 1997) to reduce
computations from treating all N observations to compu-
tations involving only the n unique inputs, a reduction of
computational complexity from O(N3) to O(n3) (espe-
cially relevant when there are many replicates). The third
element uses MLE to learn all parameters.

While full details are provided by Binois, Gramacy
and Ludkovski (2018), some specifics of the descrip-
tion above are worth noting. With λ(x) = σ 2

v (x)/σ 2
Z and

�n = (λ(x1), . . . , λ(xn)) for the n distinct inputs, log�n

is taken to be the predictive mean of a GP on latent
(hidden) variables, �n = (δ1, . . . , δn). For ease of ex-
position, assume the GP has 0-mean (a constant mean
is actually the default setting in hetGP) and take the
covariance matrix for �n to be σ 2

g (Cg + gR−1) where
g > 0, R = diag(r1, . . . , rn), and Cg is a correlation ma-
trix (obtained using a correlation function with parame-
ters θg). Then log�n = Cg(Cg +gR−1)−1�n, with �n to
be learnt. This latent �n approach facilitates smooth esti-
mates of �n and provides a fixed functional form for λ(x),
but does not incorporate the resulting uncertainty. Given
�n, the Woodbury identities (Harville, 1997) reduce the
likelihood of YN , the output at all inputs including repli-
cates, to depend only on quantities of size n. Maximum
likelihood estimates for the unknown parameters can then
be computed at a cost of O(n3), as can derivatives further
facilitating optimization for maximizing likelihood.

As a side note, heteroscedastic measurement error is
sometimes present in spatial statistics models (which are
often related to surrogate models); however, we know
of no such models, which allow for the full modeling
and predictions of the intrinsic variance process in the
same way as a hetGP. For example, the model in Nguyen,
Cressie and Braverman (2017) allows for non-constant
measurement error at different sites, but it does not es-
timate these measurement errors jointly with the other
model parameters, nor does it allow for the prediction of
the measurement errors at new unseen sites. This is mostly
because there is little interest in predicting the measure-
ment error process in spatial statistics (the “true” underly-
ing signal is the objective), whereas with stochastic sim-
ulators the intrinsic variability can be of direct modeling
interest.

Fish example. We apply both an ordinary homoscedas-
tic GP (homGP) and a hetGP surrogate to the fish example
from Section 2.1. The simulation budget is constrained to
400 runs and focuses on the relationship between the total
number, x, of fish in a population and the number, y(x),

of fish recaptured in the second round of capture. The to-
tal population is an integer between 150 and 4000. The
simulator is run 20 times at each of 20 unique x locations
in [150,4000], chosen via a maximin Latin hypercube de-
sign (see Section 4). The number of fish counted cannot be
less than zero, but the normality assumption would allow
negative fish counts, so we square root the simulated out-
put before performing our analysis, squaring the result-
ing predictions to return to the original scale afterwards.
In addition, we estimate the “truth” by generating another
data set: replicating 500 times at each of the same 20 sites.

Applying a homGP surrogate with squared exponen-
tial correlation function produces the results in the upper
left panel of Figure 1; the upper right panel shows the re-
sults of hetGP. The predicted intervals for the fish model
are obtained in the transformed (square-root) space, and
squared to get back to the original space.3 The lower pan-
els are plots with the “true” 2.5%, 50% and 97.5% quan-
tiles superimposed.

The key conclusion is that both homGP and hetGP cap-
ture the nonlinear trend (though a bit off in the region
near 800). The presence of nonconstant intrinsic variabil-
ity is clear from the truth plot, with the region near 800
showing higher variability than elsewhere. The hetGP sur-
rogate does not fully capture the nonconstant variability,
but it does improve on homGP. Full resolution is largely
a matter of simulation budget though alternative designs
may further improve hetGP. Our supplementary mate-
rial includes improved results using the sequential design
scheme of Section 4.3. The takeaway message here is that
the trend is readily captured by both homGP and hetGP
and the presence of heteroscedastic variability favours
the use of hetGP (perhaps with added simulations or im-
proved designs).

Ocean example. For the ocean model (Section 2.2), we
take each simulation “run” to be the average of 6 sim-
ulation runs. The true simulator is known to be nonnor-
mal and this adjustment makes the example more Gaus-
sian. For now, we fix the two diffusion coefficients at
Kx = 700 and Ky = 200, leaving the two spatial coordi-
nates as the only varying inputs. Using 1000 simulations
(50 sites each replicated 20 times), we obtain, for surro-
gates homGP and hetGP, the predictive mean surface and
the predictive standard deviation surface (which includes
both the uncertainty around the predictive mean and the
intrinsic variance estimates σ 2

v ). These surfaces are plot-
ted in Figure 2, with the left column for homGP and the
right column for hetGP.

3If a large portion of the predictive distribution was negative in the
transformed space, these un-transformed intervals would be invalid,
but this does not appear to be a problem in our example. Monotonic
transforms exist to avoid this problem (Johnson et al., 2018), or sam-
pling could be performed to obtain intervals in the un-transformed
space. Predictions in the transformed space are also provided in the
supplementary material (Baker et al., 2022).
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The mean surfaces for both surrogates are similar. The
predictive standard deviation for homGP (bottom-left) is
relatively constant across the input area (clearly affected
by the constraint that the intrinsic variance σ 2

v is constant).
The standard deviation surface for hetGP is markedly dif-
ferent, which could be evidence that the intrinsic variance
is non-constant.

To compare these two predictions, we obtain the “truth”
using replicate runs (up to 100,000) of the simulator at
500 sites (chosen via a LHD, Section 4), averaging the
replicates at each site to get the true mean and the square
deviations from the mean to get the true variance). These
are plotted in the Appendix (Section 7) and the supple-
mentary material, and they confirm the presence of non-
constant intrinsic variance. Moreover, the standard devia-
tion plot for hetGP exhibits a structure similar to the truth
plot, leading to the conclusion that hetGP is the better sur-
rogate for this problem. However, this conclusion comes
with a caution: repeating this experiment multiple times
reveals a great deal of variability in the standard deviation
plot, due to variability in the design and the simulations
(discussed further in Section 4.3).

Overall, reliable predictions of the mean are achieved,
but the uncertainties are less certain. This is similar to the
fish example, and improving the uncertainties would re-
quire more simulation. The results point to the superiority
of hetGP to homGP, which is confirmed via a numerical
comparison in Section 4.3, where a sequential design is
also examined and compared.

3.3 Nonnormal Variability

In many applications, assuming the variability v is nor-
mally distributed is inappropriate. With the fish example,
the number of fish cannot be less than 0. In the Ebola
example, even with the inputs x fixed, repeated simula-
tions can lead to two distinct groups of possible infection
counts (bimodality). In other simulators, there may be a
greater tendency for extreme values (fatter tails) in the
distribution of v. With these possibilities, normality can
be a strong assumption to be used with caution.

Transformation of the data is a time-honored device that
sometimes induces “enough” normality in the data to per-
mit the use of Gaussian-based methodology (as in Sec-
tion 3.2 for the fish model). For example, Henderson et al.
(2009) uses the logit transformation (logy/(1 − y)) in an-
alyzing the proportion of deletions in mitochondrial DNA.
Plumlee and Tuo (2014) take a different route by focusing
on the quantiles of the output distribution— normality is
not needed. Both of these approaches have the appeal of
leading to relatively simple modifications of the methods
in Sections 3.1 and 3.2.

There are also other, more complex, methods that gen-
erally lack the same ease of implementation. For exam-
ple, Moutoussamy, Nanty and Pauwels (2015) attempt to

model the underlying probability density function itself,
rather than the output y. Xie and Chen (2017) devise a
Student t-process that is not much different than the GP
process while at the same time allowing heavier tails in
the distribution of the data.4

3.3.1 Quantile kriging. Quantile Kriging (QK) is a
popular tool for the emulation of stochastic computer
models (Rannou et al., 2002, Plumlee and Tuo, 2014,
Zhang and Xie, 2017, Fadikar et al., 2018). These ap-
proaches are a natural extension of spatial kriging for-
mulations (Zhang, Cressie and Craigmile, 2008, Zhou,
Chang and Fuentes, 2012, Opitz et al., 2018) used in en-
vironmental applications.

The QK method directly models specific quantiles of
interest, such as the median and the lower/upper 95%
quantiles at each input. Minimal assumptions are re-
quired. Qq(x), the qth quantile of the simulator output
at input x, is modeled with a GP. Given values Qq(xi)

at inputs x1, . . . , xn, the quantile, Qq(xnew) for xnew, can
be predicted using equations (3.1) and (3.2). This frame-
work allows the distribution of the variability v to take on
almost any shape. Although a true generative process for
the output y is lost, its distribution can still be described.

To implement QK, values of the targeted quantiles at
the inputs are needed. Just as in Section 3.2, where sample
variance estimates are used, sample quantiles can be used
here given enough replicates ri at each xi . The GPs used
to predict new quantile values, Qq(xnew), should also in-
clude a noise term σ 2

q to acknowledge that the sample
quantiles are estimates. Assuming the variability of the
sample quantiles is normally distributed may also be in-
valid, but this is a level further removed from the quantity
of interest, y, and can be acceptable in practice.

As a useful modification, the quantile q can be in-
cluded as an additional input to the GP model. The quan-
tile Qq(x) can be reformulated as Q(x,q), increasing the
dimensionality of the inputs from d to d + 1. This strat-
egy allows for the prediction of Q(x,q) for any desired
quantile q , not just those that were empirically estimated
and is used by Fadikar et al. (2018) for the Ebola model.

Alternative QK-based approaches are also under devel-
opment. For example; a promising variant of QK called
Asymmetric Kriging (AK, Zhang and Xie, 2017) does not
require sample quantiles by leveraging quantile regression
techniques (Koenker and Bassett, 1978).

Fish example. For the fish simulator, QK is imple-
mented with the same simulated data set as before (possi-
ble because many replicates were obtained). The sample
5%, 27.5%, 50%, 72.5% and 95% quantiles at each of the

4The hetGP package also implements a Student-t variant (Wang,
Shi and Lee, 2017, Shah, Wilson and Ghahramani, 2014, Chung et al.,
2019).
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20 population sizes form the observed data, and the mod-
ification using the quantile q as an added input dimen-
sion is adopted. Figure 1 presents the predicted Q(x,q)

mean for 5 different quantiles along with the data (the left
plot) and compares the “true” values with predictions at
the 5%, 50% and 95% quantiles (the right plot).

The center purple curve in Figure 3 is the predicted me-
dian. The outer red lines are the predicted 5% and 95%
quantiles; the inner blue curves are the predicted 25%
and 75% quantiles. The nonmonotone “wavy” lines for
the 5% and 95% quantiles reflect the natural variability of
extreme quantiles based on only 20 observations. Without
an abundance of replicates, accurately capturing extreme
quantiles is difficult, a drawback of QK. The other quan-
tiles presented display more regularity.

The results from QK do not differ much from those in
Figure 1 where the square-root transformation was suf-
ficient. With more complex problems, such as the Ebola
model, the method is suitable while other approaches may
be less so. In any case, QK can be a good robust choice,
given adequate data for estimating quantiles.

3.4 Multiple Outputs

The discussion so far has assumed that the simulator
outputs a single scalar quantity of interest. For multivari-
ate output, a more comprehensive model would be ideally
used.

In the geostatistical literature—typically focused on 2-
d spatial applications—multivariate methods incorporat-
ing cross-correlation between outputs are often called
cokriging (Cressie, 1993). Adapting these to multivari-
ate simulators must consider higher dimensional inputs,
computational tractability and output smoothness. Spe-
cific features of the simulator (e.g., hierarchies, dynamics,
no missing outputs) have allowed some such adaptations
(Kennedy and O’Hagan, 2000, Conti and O’Hagan, 2010,
Fricker, Oakley and Urban, 2013, Paulo, García-Donato
and Palomo, 2012).

Bespoke, problem-specific formulations for time-series
and other outputs have also been entertained (Farah et al.,
2014, Sun et al., 2019).

Though less than ideal, more general methods can also
be employed with good effect. If there are a small number
of outputs, treating each independently, with its own sur-
rogate model, often suffices. This method can be effective,
despite ignoring any correlation between the different out-
puts (and thus wasting information). For example, Spiller
et al. (2014) deploy independent surrogates at each of a
multitude of sites in a region to good effect.

Alternatively, by treating the index, t , of the T outputs
as an additional input dimension (changing the dimen-
sion of the input space from d to d + 1) a GP surrogate
on d + 1 input dimensions can be formed (Bayarri et al.,
2009). This method allows correlation structures between

the different outputs to be modeled. This is similar to the
QK modification where quantile levels are treated as an
added input (Section 3.3.1). A drawback of this technique
is that, if T is very large, computational issues will arise
because the GP must be trained on NT data points rather
than just N . Intrinsic variability prevents simplifications
of the sort used in Bernardo et al. (1992) for deterministic
simulators in this setting.

A different approach reduces the the size of T to
a smaller K0 by representing the multivariate output
through the use of basis functions, ψk(t):

(3.5) y(x, t) =
K0∑
k=1

wk(x)ψk(t) + δ(x, t).

Coefficients wk(xi), k = 1, . . . ,K0 are determined by the
data, and δ(x, t) is the residual error between the basis
function representation and the data y. If K0 = T , then
δ = 0. Typically, K0 is taken to be much less than T , but
large enough so that the error, δ, is sufficiently small. Each
wk(x) can then be independently modeled with a surro-
gate and predictions for y(x, t) are obtained from equa-
tion (3.5), ignoring δ.

Different choices for the bases can be appropriate in
different settings. For example, Bayarri et al. (2007a) use
wavelets for the ψks in a deterministic setting where t is
time. A common choice of basis functions are principal
components: the ψks are the eigenvectors of the matrix
Y�

N YN , the first K0 corresponding to the first K0 eigen-
values in decreasing order. Often, the first few (five or
less) principal components are enough to capture suffi-
cient information about the full (T ) data set. Coefficients
wk(xi) are then equal to

∑T
t=1 y(xi, t)ψk(t). More in-

formation about principal components can be found in
Jolliffe (2011) and software for obtaining ψk and wk is
prevalent.

Further discussion about using principal components to
model high-dimensional simulator output can be found
in Higdon et al. (2008). Principal components are also
utilized in Fadikar et al. (2018) to model the time-series
output of the stochastic Ebola simulator. While principal
components are a common default, there is concern that
key features of the data set may be left within the dis-
carded δ(x, t) preventing reliable prediction. Salter et al.
(2019) document these concerns with regards to calibra-
tion and suggest an alternative.

For problems with functional outputs, with potentially
missing data and/or irregularly spaced data (such as ir-
regularly spaced timesteps or spatial locations), a func-
tional decomposition can also be useful. For example, Ma
et al. (2021) use functional principal component analysis
to model satellite observation simulations.

Overall, multiple output analysis lies on the frontier of
research, especially for stochastic simulations (e.g., cap-
turing dependence in the variability between different out-
puts is one future research direction). The techniques dis-
cussed are a start.
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FIG. 3. Fish example: Same setup as Figure 1 but with a QK surrogate. Mean predictions of 5 quantiles (5%, 25%, 50%, 75% and 95%) are
provided on the left along with data, and mean predictions of 3 quantiles (5%, 50% and 95%) are provided on the right along with the “true”
values.

4. EXPERIMENTAL DESIGN

For an experiment, the design (the choice of x val-
ues) and analysis (the assessment of the output y(x)) are,
in principle, closely connected. Other considerations can
also enter. For physical experiments, controlling for ex-
ternal influences or nuisance factors by blocking and ran-
domization is often a vital part of the design. External in-
fluences are absent in computer experiments and so con-
trolling for nuisance factors is usually irrelevant. How-
ever, many minor parameters are often fixed which could
instead be randomized over, with a consequent addition to
intrinsic error.

Extensive study of deterministic computer experiments
has lead to the recommendation of readily computed
“space-filling” designs where no large region of the in-
put space is missed. Multiple methods exist for obtaining
space-filling designs, the most popular being Latin hy-
percube designs (LHDs, McKay, Beckman and Conover,
1979).5 LHDs have proved adequate, especially when
joined with an additional criterion, such as the maximin
criterion, where one also maximizes the minimum dis-
tance between points in the design.6 Sobol sequence de-
signs (Sobol, 1967) provide an alternative where the xs
are generated sequentially making it easy to retain the
space-filling character when additional simulations are
made at a later stage.7 Pronzato and Müller (2012) have a
lengthy discussion of these and other space-filling meth-
ods, some pertinent to nonrectangular input spaces.

5A Latin hypercube design is one where: in each dimension the in-
put space is divided into intervals and each interval is constrained to
contain exactly one data point.

6Such maximin LHDs are produced, for example, by the max-
iminSLHD function of the R package SLHD (Ba, 2019), or the left-
hand side function from the Python package pyDOE (Lee, 2015).

7In R, the sobol function in the R package randtoolbox (Chalabi
et al., 2019) can be used to generate Sobol sequences.

For stochastic simulators, the picture is less clear. The
presence of intrinsic variability raises the complication of
replication, which is not present in deterministic experi-
ments. With the same inputs, a stochastic simulator can be
run multiple times (replicated), providing different output
values each time due to the intrinsic randomness. Repli-
cates obviously have an effect on the estimation of the
intrinsic variance, σ 2

v , and, therefore, on prediction (see
Section 3.2), and so the number and location of replicates
are important. A simple approach is to use a space-filling
design to establish the sites Xn = (x1, . . . , xn) of the ex-
periment and then add replicates at each site. Determining
the number, ri , of replicates at each site xi and how to bud-
get between replicates and sites is not well understood. In
fact, there is limited theoretical evidence of the need for
replicates altogether (unless the surrogate explicitly needs
them), although there is numerical evidence and wide be-
lief that replicates can be advantageous (at least in appro-
priate contexts). For example, Wang and Haaland (2019)
produce designs by minimizing bounds on the integrated
mean squared prediction error (IMSPE).8 Their numerical
results show no need for replicates unless σ 2

v (x) is large
compared to σ 2

Z (the uncertainty around the mean, M).
The presence of intrinsic variability suggests there is

value in multistage designs where stage 1 is used to get in-
formation about σ 2

v (x) and later stages exploit this infor-
mation to allocate replicates and select new inputs. Ques-
tions arise as to how inputs should be selected for stage 1,
and also how to properly leverage the results from stage
1 to select new inputs and replicates. These two factors,
replication and multiple stages, are central to developing
effective design strategies.

8With the predictive variance, σ 2
N(x), the IMSPE, of a design D is

equal to
∫
x∈X σ 2

N(x)dx.
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4.1 Single-Stage Design

A common approach in single-stage studies is to use
space-filling designs for inputs, say n in number, and r

replicates at each input, sometimes with no repeats, that
is, r = 1. Predictions follow as described in Section 3
depending on the particular prediction model selected.
Choices have to be made about the total number of runs
and the number of replicates at each input site (N = nr).
Often, N is a question of budget, but there is little insight
into how r should be chosen except when meeting a spe-
cific surrogate model requirement, as in SK (Section 3.2).

For their single-stage study, Marrel et al. (2012) use
a standard LHD with no repeats to compare the perfor-
mance of different statistical models. On the other hand,
Plumlee and Tuo (2014) use a LHD with varying num-
bers of replicates ri at each xi . In their case, the number
of replicates must be large, because the QK method (Sec-
tion 3.3.1) depends on computing quantiles of the output
y(xi) at each input site of the design.

4.2 Two-Stage Design

The case for a two-stage design is largely to enable es-
timation of σ 2

v at stage 1 and use it for the second stage.
Ankenman, Nelson and Staum (2010) provide one solu-
tion in the context of SK. A first-stage design chooses the
xis via an LHD of size n1 with a common number, r , of
replicates at each of the inputs, resulting in a total num-
ber of N1 = n1r runs at stage 1. The first-stage analysis
uses the r replicates at each input to estimate σ 2

v (xi) us-
ing the sample variances. As outlined in Section 3.2, a GP
(working with log s2(xi)) is then used to produce “plug-
in” estimates of σ 2

v (x) for all x. A different GP uses these
variance estimates to build a predictor for the mean out-
put M .

For stage 2, n2 additional unique input locations are
chosen so that the combined set of design locations, Xn =
(x1, . . . , xn), remains space-filling. The IMSPE is then
calculated using the GP model constructed in stage 1.
Minimizing the IMSPE with respect to the number of
replicates Rn = (r1, . . . , rn) provides the optimal number
of replicates for the chosen Xn. Details are in Ankenman,
Nelson and Staum (2010). One difficulty is that the op-
timal Rn might produce an ri for a first-stage site that is
smaller than the r already obtain in stage 1. Some modi-
fication to the design is then necessary.

In this setting, a Sobol sequence could also be used to
obtain a design that is space filling at both stage 1 and
stage 2. This is not what is done in Ankenman, Nelson
and Staum (2010), but a Sobol sequence is easier to im-
plement and likely to yield similar results. Choosing the
unique inputs Xn for stage 2 by optimizing the IMSPE
could also be done, but this adds to the computational bur-
den. Suitable recommendations for the values of n1, n2,
N and the replicates at each distinct input are lacking (in

Ankenman, Nelson and Staum (2010) the recommenda-
tions are ad hoc) and, as for one-stage experiments, open
for study. A third-stage design (or indeed, any multistage
design) can be constructed by repeating stage 2 in this
process.

4.3 Sequential Design

In some cases, it can be feasible to carry out a se-
quential process where, after the first stage, simulation
runs are chosen one-at-a-time. After each run, the rele-
vant quantities can be updated before determining the next
run. This can address the issue of learning about σ 2

v and
choosing new runs, without prespecifying the proportion
of replicates. An advantage of a sequential design is the
possibility of stopping when a criterion is met before a
budget constraint is reached. An additional advantage is
the increased likelihood of performing useful simulator
runs, replicates or otherwise. For some objectives, such
as optimization (Section 6.3), a sequential design is usu-
ally essential. For global prediction, Binois et al. (2019)
present one sequential design, implemented in the previ-
ously mentioned hetGP package.

The strategy in Binois et al. (2019) begins at stage 1
with a space-filling design D1 of n1 inputs and an allo-
cation of runs (r(x1), . . . , r(xn1)). Using a GP for M and
a latent GP prior on σ 2

v (as in Section 3.2), estimating
the parameters by MLE leads to a calculable estimate of
IMSPE(D1). A new point z is considered, either as a new
unique input xn1+1 or as a replicate of an existing input
in D1. Selection z is added to the design D1 if z mini-
mizes IMSPE(D1 + z), yielding a new design D2. This
myopic rule can be iterated, and each time a new point is
added, the surrogate is updated. The process stops when a
criterion is met or the computational budget exhausted.

Computational viability is strained by the updating re-
quired after each run. On the other hand, the computa-
tional burden is less than it could be—by being “greedy”
it only seeks the optimal data point for the very next sim-
ulator run, ignoring runs that may be better in the long
run.

This is not the only sequential design scheme available
for global prediction problems. For example, the tree-
generating processes used in TGP and BART (see Sec-
tion 6.1) can lead to specialized sequential design strate-
gies. Details are available in Gramacy and Lee (2009) and
Chipman, George and McCulloch (2010).

Blurring the lines between multistage and sequential
designs, it can sometimes be practical to run additional
simulations in batches (e.g., as in making efficient use
of a multicore supercomputer). In such circumstances, a
“batch design” would be desirable. These have been de-
veloped for deterministic experiments (Loeppky, Moore
and Williams, 2010, Duan et al., 2017, Erickson et al.,
2018), but not yet explicitly extended to stochastic cases.
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FIG. 4. Ocean example: Predictions for the ocean model output using seqhetGP. Left plot is the mean, μN , of the predictive distribution; right
plot the standard deviation, σN . Design sites with their replicates are superimposed on the right-hand plot.

When fully sequential methods are feasible, the se-
qhetGP strategy sketched above is valuable. There are
several aspects worth considering with sequential designs:

• The extensive use of a surrogate in the construction of
the design may require scrutiny by diagnostics that as-
sess the quality of the surrogate.

• The first stage of a sequential strategy should avoid a
poor (e.g., too small) initial design lest a poor starting
surrogate leads to poor choices thereafter.

• The utility of a sequential design depends on the rel-
ative cost of implementation compared to a simulator
run. For challenging problems, simulator runs are likely
to be costly enough to make sequential design attrac-
tive.

• There may be modifications to a sequential design that
reduce computational load without paying a significant
cost in accuracy. For example, by reestimating param-
eters periodically rather than after each step.

Ocean example. For the ocean model, we implement
the sequential design scheme from Binois et al. (2019)
using an initial design of 50 sites (chosen by a maximin
LHD in 2-d), giving each site 5 runs. The remaining 750
data points are then assigned via the sequential scheme.
The resulting mean and standard deviation surfaces are
in Figure 4. For the standard deviation surface, the de-
sign sites are superimposed along with the number of runs
taken at each site.

The mean surface in the left panel is slightly different
than for the nonsequential analyses (Figure 2, top row).
The standard deviation surfaces look very different. For
the design itself, new inputs are heavily replicated in re-
gions where the standard deviation is larger, and less so
in regions where it is smaller. Additionally, the sequential
design includes more unique sites than the fixed design,
and more points on the boundaries of the input space.

Using the “truth” established in Section 3.2, we can
compare the performances of the three methods. As dis-

cussed previously, the visual presence of heteroscedastic-
ity is a reason to avoid homGP. Visually distinguishing
between the performances of the hetGP and seqhetGP sur-
rogates is more difficult: the means appear similar, and
while some patterns in the true standard deviation appear
to be captured by hetGP, imperfections are visible and the
magnitude is not always correct. With the seqhetGP stan-
dard deviation, a lot of nuance seems lost. To properly
compare the different methods, a numerical comparison
can be more valuable.

Two useful numerical measures are root mean squared
error, RMSE (the square-root of the average squared dif-
ference between the surrogate’s prediction of the mean
and the “true” mean) and Score (the proper scoring rule
from equation (27) in Gneiting and Raftery, 2007). RMSE
measures the accuracy of the mean predictions and Score
is an overall measure testing the accuracy of the com-
bined mean and variance predictions. With a test set of
inputs x1, . . . , xp and simulator outputs y1, . . . , yp , surro-
gate predictive means μN(x1), . . . ,μN(xp) and variances
σ 2

N(x1), . . . , σ
2
N(xp), Score is

(4.1)
1

p

p∑
i=1

(
−

(
yi − μN(xi)√

σ 2
N(xi)

)2
− log

(
σ 2

N(xi)
))

.

Smaller RMSE is better while for Score, larger is better.
For the three methods, the RMSE for homGP, hetGP

and seqhetGP are respectively 2.056, 1.985 and 1.567;
and the Scores are respectively −3.999, −3.880 and
−3.834. The RMSE results reveals that seqhetGP is best
at predicting the mean, which was not obvious from the
plots. The Scores for hetGP and seqhetGP are close but
both noticeably better than homGP, affirming the presence
of heteroscedasticity.

The randomness in stochastic simulators, as well as
variability in design (there are many possible maximin
LHDs), can induce a large degree of variability in specific
results (such as those just cited). It is therefore difficult
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to rely on a single result for making general comparisons.
As such, the above experiment is repeated 100 times and
the resulting 100 RMSEs and Scores are summarized in
boxplots in Figure 5.

The boxplots confirm what was found with the single
data set: heteroscedasticity is present and seqhetGP is pre-
ferred. Visual inspection of many of the standard devia-
tion plots for the repeated experiments (as discussed in
Section 3.2 and found in the supplement) reveals consid-
erable variation and departure from the true standard de-
viation. We find the variance (the intrinsic variance and
the GP uncertainty for the mean) can be hard to get right
without an abundance of data, and the difficulty is com-
pounded by the use of plug-in estimates whose uncer-
tainty is not accounted for.

4.4 Designing for Statistical Model Parameter
Estimation

Sections 4.2 and 4.3 construct designs that rely on a sur-
rogate model based on stage 1 data in order to choose sub-
sequent data points. The quality of the designs depends on
the accuracy of the surrogate which, in turn, depends on
the accuracy of its parameters. An alternate approach to
those used in Sections 4.2 and 4.3, is to build a design with
the express purpose of better estimating these parameters.

Boukouvalas, Cornford and Stehlík (2014) address this
idea, using a simple parametric function for the variance
(σ 2

v (x) = exp(h(x)), where h is a simple function (e.g.,
a polynomial). They propose designs that maximize a
criterion previously used for deterministic simulators by
Abt and Welch (1998): the logarithm of the determinant
of the Fisher information matrix, log |I |. Numerical re-
sults suggest this method gives improvements in estimat-
ing the parameters, but overall global prediction is no bet-
ter, and sometimes worse, than using a space-filling de-
sign. When prediction is of prime importance, the ques-
tion arises about how to make use of such designs for
stage 1 in a multistage or sequential setting, where its im-
pact on obtaining better parameter estimates might be felt.
For example, see Zhang, Cole and Gramacy (2021).

5. CALIBRATION

Calibration is needed when there are inputs to the sim-
ulator that are neither known nor measurable, which is
a common condition in practice. Transmissibility in the
Ebola simulator and the diffusion coefficients in the ocean
model are examples of such inputs. In order to infer (in-
directly) values for these inputs and produce predictions,
added information in the form of field data (experimen-
tal or otherwise) are necessary. Inclusion of field data and
calibration parameters, labeled uC , leads to the observa-
tion model:

(5.1) yF (x) = yS(x,uC) + δMD(x) + ε,

where yF (x) are real-world field observations at control-
lable (or measurable) inputs x, yS is the simulator with
additional unknown, nonmeasurable, inputs uC , ε is mea-
surement error for the observations yF (x) (with variance
σ 2

ε ) and δMD(x) is an important term that accounts for the
simulator not being a perfect representation of reality. yF

“observes” reality with error ε; reality = yS + δMD.
Multiple competing methodologies and even philoso-

phies exist for calibration. Several solutions to the cali-
bration problem are outlined below. Despite the central-
ity of calibration in computer experiments, comprehen-
sive comparisons are lacking.

5.1 Kennedy–O’Hagan Calibration (KOH)

The formulation in equation (5.1) was made by
Kennedy and O’Hagan (2001) for deterministic simula-
tors and is the basis for much of the calibration and related
prediction work since. The strategy pursued by Kennedy
and O’Hagan (2001), as implemented in Bayarri et al.
(2007b), obtains a surrogate for yS and models δMD(x)

with a GP (although other choices are possible). After re-
placing yS with the surrogate, posterior distributions for
all unknowns can be obtained via a Bayesian analysis. In
practice, the surrogate model is fit only using the sim-
ulator data, ignoring possible influences from the field
data. Details and discussion of this modular approach can
be found in Bayarri et al. (2007b) and Liu, Bayarri and
Berger (2009).

The KOH approach emphasizes the need to address
calibration and model discrepancy together. Confounding
between uC and δMD(x) inevitably occurs because there
are multiple combinations of uC and δMD(x) that result
in the same observed field data. As such, uC is noniden-
tifiable and its estimation is compromised, as is the dis-
crepancy. Nonetheless, the resulting predictions for y and
E(y) are sound, even if the individual estimates for uC

and δMD(x) are not. For details and further discussion, see
Higdon et al. (2004), Bayarri et al. (2007b), Brynjarsdóttir
and O’Hagan (2014) and Tuo and Jeff Wu (2016).

Multiple attempts to circumvent confounding have sur-
faced. Tuo and Wu (2015) alleviates the ambiguity in uC

by formally defining it as a least-squares quantity; Gu
and Wang (2018) propose novel priors for the discrep-
ancy that compromise between the Tuo and Wu (2015)
strategy and KOH; and Plumlee (2017) introduces priors
on the discrepancy that are orthogonal to the prior mean.
In the stochastic simulator literature, Oakley and Young-
man (2017) removes δMD but compensates by inflating
the variability in the simulator output. Ignoring δMD alto-
gether can sometimes be justified by strong evidence of
the simulator being accurate, but such evidence is rare.

For stochastic problems, where reality is stochastic, the
discrepancy term δMD(x) cannot be assumed determinis-
tic. Discrepancy in stochastic settings is an open research



STOCHASTIC COMPUTER MODELS 77

FIG. 5. Ocean example: Performance results of the three ocean model surrogate fits, repeated 100 times. The boxplots are for computed RMSE
and Score, for each repetition, at the 500 test locations.

question, with little attention so far. The model for the
discrepancy may need to be similar to the model for the
simulator; for example, if modeling yS calls for a hetGP
with a Matérn 5/2 correlation function, then it is possible
that a hetGP is needed for the discrepancy as well (per-
haps with a smoother squared exponential correlation).
A full Bayesian analysis in such circumstances may be
prohibitively expensive and the above procedure might
need to be modified. Sung, Barber and Walker (2019) use
a hetGP for the discrepancy (but with a deterministic sim-
ulator), estimating parameters via maximum likelihood
and following Tuo and Wu (2015) to avoid confounding.

Revisiting Ebola. The Ebola study (Fadikar et al., 2018)
calibrates an ABM using the KOH framework. The sim-
ulator yS has 5 unknown, unmeasured inputs uC , and the
output is the log of the cumulative number of infected in-
dividuals up to week 1 and every week thereafter up to
57 weeks. The field data yF is a set of reported cumula-
tive counts. For the statistical model, a QK strategy (Sec-
tion 3.3.1) is followed by replicating each distinct simula-
tion 100 times and then calculating the 5%, 27.5%, 50%,
72.5% and 95% quantiles at each time step. These quan-
tile output trajectories are then reduced to a more man-
ageable 5 dimensions using the principal component de-
composition outlined in Section 3.4, which are then used
to fit the QK model.

Underlying the approach is an assumption that the epi-
demic trajectories (actual and simulated) can be approx-
imated by quantile trajectories (i.e., a realized epidemic
that resembles the qth quantile at time 1 will also resem-
ble the qth quantile at a later time). As such, the quantile
q is included as an input parameter (see Section 3.3.1) to
allow KOH calibration to learn about the (unknown) value

of q , as well as the 5 calibration parameters, for the ob-
served epidemic. The simulator and reality quantile tra-
jectories are deterministic and unknown, so the discrep-
ancy is also deterministic. Posterior distributions for un-
known uC , δMD, and q are then obtained and used to make
predictions of the cumulative counts and other quantities.

In the main analysis, which restricts the field data to
only the first 20 weeks, the estimate of model discrepancy
is found to be almost zero. A subsequent analysis done
using field data up to week 42 exposes some inaccuracy
of the simulator (nonzero δMD(x)). This reveals that, for
this example, the simulator is flawed because it continues
to predict infections even after the epidemic dies in real-
ity (and so a discrepancy term is important). Extrapolation
to later weeks using only the first 20 weeks of field data
would be misguided because the simulator flaw would not
be identified. This is a general issue for simulators: ex-
trapolation can be tricky and a degree of faith is needed in
the simulator.

Ocean example. The previous ocean analyses fixed the
two diffusion coefficients. In reality, they are unknown
and calibration is necessary. “Field” data are artificially
created by averaging over 200 simulations at 150 differ-
ent longitude–latitude coordinates, using the previously
fixed values of the diffusion coefficients (Kx = 700 and
Ky = 200). “True” values are obtained by adding a fake
discrepancy, taken as a single realization from a GP with
a squared-exponential correlation function, a variance of
1.64, and θ values of (1, 2) (equation (3.3)). To these, nor-
mally distributed pretend “observation errors” with a vari-
ance of 4 are added, two such observations at each site. In
real problems, the field data would be observed and not
generated like this. Note that field data for this problem
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corresponds with the mean of the simulator, not individ-
ual draws from the simulator; a result of this simulator
being a stochastic approximation.

With the diffusion coefficients now uncertain, the simu-
lator has four inputs. A computer experiment is designed
with runs at the 150 sites used for the field data and 500
unique selections of the calibration parameters Kx and
Ky . This is done by combining copies of the 150 longi-
tude and latitude sites with a size-500 maximin LHD for
(Kx , Ky ), and then improving the combined design by
maximizing the minimum distance between design points
in the 4-dimensional space. We call this set of points
Doc. The simulator experiment is carried out by taking 10
replicates at each point in Doc. Two distinct surrogates (a
homGP and a hetGP) are fit with this fixed design. In ad-
dition, a seqhetGP surrogate is constructed, with an initial
design of only 4 replicates of Doc and the remainder of
the budget assigned following the strategy of Binois et al.
(2019), described in Section 4.3.

For a KOH analysis done in modular fashion, the sur-
rogates are fit only using the simulated data. Because re-
ality here is represented by the expectation of the simu-
lator (rather than the simulator output itself), yS in equa-
tion (5.1) is replaced with E(yS). Similarly, because real-
ity is deterministic, δMD is modeled as a standard GP. Of
course, the simulated data are outputs from yS , not from
E(yS)—the surrogate is used to approximate the deter-
ministic E(yS) (M). MCMC is then used to obtain pos-
terior distributions for the remaining unknowns: the dif-
fusion coefficients, Kx and Ky ; the variance and corre-
lation parameters of the model discrepancy GP, σ 2

MD and
θMD; and the observational error, σ 2

ε ). The obtained pos-
terior distributions for the key parameters are in Figure 6;
their true values are Kx = 700, Ky = 200, σ 2

MD = 1.64
and σ 2

ε = 4.
For all three surrogate models, the posterior distribu-

tions for Kx are fairly diffuse. The Ky posteriors are
highly concentrated, but not quite around the true value.
The three posteriors for observational error are quite sim-
ilar but all point to estimates closer to 5 rather than the
true 4. The posteriors for the discrepancy variance are also
diffuse. These plots underline the dilemma of calibration:
obtaining accurate values of calibration (and other) pa-
rameters in the presence of model discrepancy is difficult.
Additionally, with noisy data, it is difficult to obtain pre-
cise estimates. However, KOH does yield useful posterior
predictive distributions.

Table 1 compares predictions by KOH calibration with
3 other calibration approaches. The first one estimates Kx

and Ky by ordinary least squares (OLS): (Kx,Ky) is cho-
sen such that the sum of the squared residual difference
between the mean surrogate prediction and the observed
data is minimized. New observations are then predicted
by running the surrogate with the parameters (Kx,Ky)

replaced by the OLS estimates (K̂x, K̂y). The second ap-
proach follows a frequently adopted practice by guessing,
or “judiciously selecting,” specific values for Kx and Ky .
Here, the choices Kx = 600 and Ky = 400 are made, and
then predictions are made using the surrogate. Call this
method SINGLE. The third method, NOCAL, generates
predictions as if there were no field data and the distribu-
tion for (Kx,Ky) is taken as their prior distribution, in-
dependent uniform priors on [100, 1000]. In these alter-
native methods, the observational error variance is fixed
at the true value, and 0-discrepancy is assumed (the for-
mer is overly generous and the latter is all too common in
practice). For NOCAL, a distribution for the oxygen con-
centration is obtained by sampling values of Kx and Ky

from their prior distribution and plugging them into the
surrogate, while for KOH, by sampling from the posterior
distributions of all unknowns.

Although the differences in RMSE are negligible, the
Scores indicate that KOH performs the best. It is also
possible that the accuracy of OLS, SINGLE and NO-
CAL is overstated, because the observational error vari-
ance is taken as known while in KOH it is estimated. That
the least squares estimates (K̂x, K̂y) are not always close
to the true values is unsurprising given the presence of
discrepancy, along with possible imperfections and high
variability in the surrogate. For similar reasons, scant dif-
ferences appear among the three surrogates.

The similarity of RMSEs is a consequence of large vari-
ability in the surrogate, the presence of discrepancy, the
dominance of the longitude and latitude inputs and a weak
effect from the calibration inputs. The first explains the
magnitude of the RMSEs and the last explains why fairly
inaccurate calibration inputs (in OLS and SINGLE) do
not matter. Because KOH addresses discrepancy, its Score
exceeds the others, showing that accounting for the dis-
crepancy is necessary and cannot be wished away.

5.2 History Matching (HM)

History Matching (HM) is a common alternative to
KOH calibration (Craig et al., 1997, Vernon, Goldstein
and Bower, 2010, Boukouvalas et al., 2014, Andrianakis
et al., 2017). HM searches for inputs where the simulator
outputs closely match observed data, while recognizing
the presence of the various uncertainties, including model
discrepancy. The HM approach rules-out “implausible”
inputs in a straightforward way, rather than attempting to
find probable inputs. With an observation yF , and initially
assuming uC makes up all the unspecified simulator in-
puts, uC is deemed implausible if

(5.2)
|yF − μN(uC)|√

σ 2
N(uC) + σ 2

MD + σ 2
ε )

≥ 3,

where σ 2
N , σ 2

MD and σ 2
ε are the variances of the surrogate,

the model discrepancy and the observational error, respec-
tively. In other words, an input is implausible if the dif-
ference between the observation and the simulator output
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FIG. 6. Ocean example: KOH calibration results for the ocean model. The top row shows the posterior densities for the four parameters using
homGP with the fixed design, the middle row uses hetGP with the fixed design and the bottom row uses the hetGP surrogate with the sequential
design. The budget for all three is 5000 runs. True values are superimposed as red vertical lines.

(using that input) is sufficiently large relative to those un-
certainties. The number 3 comes from Pukelsheim (1994)
who shows that at least 95% of any unimodal distribu-
tion is contained within three standard deviations. When
there are multiple outputs or additional, controllable, in-
puts there are modifications to equation (5.2) (Vernon,
Goldstein and Bower, 2010).

The process can be repeated in so-called “waves,” using
nonimplausible uC found at one wave to generate simu-
lation runs for the next wave, sequentially reducing the
space where uC could lie. With these waves, HM aims to
avoid regions of inputs where uC is unlikely to be and, in
that regard, HM is a also calibration design scheme. At
any given wave, it is possible for all values of uC to be
deemed implausible—the so-called terminal case (Salter
et al., 2019)—usually implying that σ 2

MD is set too low

or that the simulator is not fit for purpose. Andrianakis
et al. (2015) contain a thorough description of HM whilst
applying it to a complex epidemiology model of HIV.

HM and KOH. With KOH, the estimation of uC is con-
founded with discrepancy, but predictions and their un-
certainties are available. However, implementing KOH in
complex problems may be burdensome if not intractable.
Speculatively, a hybrid strategy may be to use HM to re-
duce the input space, confirm the absence of the termi-
nal case, and then apply KOH in the narrowed space to
get predictions and uncertainties. Complex models, un-
like the fish and ocean examples in this review, would
be ones for which this approach would be most appeal-
ing. Such hybrid strategies are a topic for further explo-
ration.

TABLE 1
Ocean example: Performance results of the three ocean model surrogates under KOH calibration. RMSE at the 500 test locations with the “true”

values used for Figure 5; similarly for Score. (K̂x, K̂y) are least squares estimates for (Kx,Ky), OLS presents the predictive results from least
squares calibration, SINGLE the results from arbitrarily choosing (600,400) for the diffusion coefficients, NOCAL the results from sampling the

prior for (Kx,Ky) and KOH the results from performing KOH calibration

(K̂x, K̂y) OLS SINGLE NOCAL KOH

RMSE
homGP (824.9, 295.4) 9.16 9.16 9.22 9.14
hetGP (754.9, 295.8) 9.16 9.16 9.20 9.15

seqhetGP (496.3 276.0) 9.15 9.15 9.22 9.16

Score
homGP −2.50 −2.66 −2.59 −2.32
hetGP −2.55 −2.71 −2.62 −2.32

seqhetGP −2.55 −2.69 −2.61 −2.30
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FIG. 7. Fish example: ABC calibration directly (left) and via hetGP surrogate (right) for the fish model. The prior for the true population size is
uniform on {200, . . . ,4000} and 25 recaptured fish were observed. The left plot shows 10,000 simulations, highlights the 52 in agreement with the
observation, and shows the histogram of accepted simulations. The histogram in the right panel is for the 3811 accepted draws out of 1,000,000
from hetGP.

5.3 Approximate Bayesian Computation (ABC)

ABC methods offer alternatives which have been useful
in moderately complex contexts (Rutter et al., 2019); but
less so in more ambitious settings (McKinley et al., 2018).

ABC is a general method for producing samples from
π(uC |YF ), the posterior distribution of unknowns uC ,
given data YF . ABC does this by generating samples for
the unknowns u

(s)
C and the output z(s) from π(YF |uC) ×

π(uC), that is, from the likelihood of the data given the
unknowns, multiplied by the prior probability of the un-
knowns. For computer models, generating samples from
the likelihood is equivalent to running the simulator. Such
samples are only accepted if z(s) = YF . For continuous
settings, where exact equality cannot occur, acceptance is
instead made if B(z(s), YF ) < τ , where B is a measure
of distance and τ a level of tolerance. An approximated
posterior distribution is then given by the collection of ac-
cepted u

(s)
C s. When there are multiple outputs (or there

are other controllable inputs x, and so for any given u
(s)
C

there are effectively multiple outputs), YF and z(s) can
be replaced with informative summary statistics. Finding
a single statistic sufficient for all outputs is challenging,
and a poorly chosen one can invalidate results.

The choice of the tolerance τ is also important. If τ

is small, then it may take a very long time to generate
a single sample which satisfies the inequality. If τ is not
small, then the approximation to the posterior is less re-
liable. For calibration, τ can be interpreted as a bound
on the observational error and model discrepancy, lead-
ing to a “correct” posterior rather than an approximation
(Wilkinson, 2013). This is then similar to HM with the
subjective choice of bounds.

ABC can be done without the use of a surrogate, but
this will require many runs of the simulator itself. Other-
wise, very few accepted uC will be obtained, or an overly
high value of τ will be required. In either case, accuracy is
compromised. Such computational barriers are alleviated
by the use of a surrogate.

Fish example. Here, we apply ABC to the fish simulator
in order to estimate how many fish are in the total popu-
lation. Suppose that 25 fish are recaptured in the second
round. A straightforward method to determine the total
population size is to simulate many times from the NetL-
ogo fish model for many different values of the total fish
population, and “accept” every simulation that leads to
25 fish being recaptured. This is exactly ABC, and is a
fairly common practice with ABMs. Simulating 10,000
times, using a uniform prior on the integers between 200
and 4000 (so each such population size has prior proba-
bility 1/3801), yields the results in the left panel of Fig-
ure 7. This direct use of the simulator produces only 52
accepted samples, which is a very small number, and this
is from 10,000 simulator runs. In comparison, the hetGP
surrogate fit from only 400 simulator runs (from which
1,000,000 samples can be quickly drawn) yields 3811 ac-
cepted samples. This result, illustrated in the right panel
of Figure 7, gives a less noisy histogram with the same
overall shape. If the simulator is even marginally costly,
then a surrogate is unquestionably valuable for ABC com-
putations.

5.4 Related Calibration Techniques

The three calibration techniques above are the more
popular techniques in the literature, but others also exist.

Bound-to-Bound (Frenklach et al., 2016) is akin to HM,
where an error bound that sweeps up all uncertainties
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is similarly defined and quadratic programming is then
used to find feasible bounds for uC . Bayesian melding
(Poole and Raftery, 2000, Raftery, Givens and Zeh, 1995)
is a technique related to Bayesian calibration, used to
reconcile differences between elicited prior distributions
on inputs and outputs of a simulator. It has been ap-
plied in ecology, epidemiology, urban modeling and pol-
lution monitoring (Ševčíková, Raftery and Waddell, 2007,
Alkema, Raftery and Clark, 2007, Radtke, Burk and Bol-
stad, 2002, Fuentes and Raftery, 2005).

6. OTHER METHODS AND OBJECTIVES

Here, we briefly outline some other surrogate modeling
and downstream tasks.

6.1 Regression Trees

In some situations, the simulator mean M may have
discontinuities or “regime changes,” where a very differ-
ent relationship between y and x exists in one part of in-
put space compared to another part (i.e., nonstationarity).
Regression trees (Breiman et al., 1984) form a class of
methods that can be useful in these situations. They are
also useful in contexts where some inputs are categorical
rather than numerical. The problems are treated by divid-
ing the input space into mutually exclusive regions within
which independent surrogates (GPs or other regression
methods) are fit.

Two approaches: the trees GP (TGP, Gramacy and Lee,
2008) and Bayesian Additive Regression Trees (BART,
Chipman, George and McCulloch, 2010) have found wide
application. Both use the data to automatically parti-
tion the input space, rely on Bayesian computation and
have publicly available software: TGP in tgp on CRAN
(Gramacy and Taddy, 2016, Gramacy, 2007); BART in
several R packages, including BayesTree (Chipman
and McCulloch, 2016) and BART (McCulloch et al.,
2019).

Other approaches by Rullière et al. (2018), and via
Voronoi tessellations instead of trees (e.g., Kim, Mallick
and Holmes, 2005, Rushdi et al., 2017, Park and Apley,
2018), have received less attention. Pratola et al. (2020)
extends BART to heteroscedastic σ 2

v (HBART) by model-
ing M as a sum of Bayesian regression trees (as in BART)
and the intrinsic variance σ 2

v (x) as a product of Bayesian
regression trees, in a joint approach similar to that in Sec-
tion 3.2.

Calibration methods capitalizing on the KOH approach
and using TGP are explored in Konomi et al. (2017). In
each terminal node of the partition a GP with an indepen-
dent constant intrinsic variance term is assumed for the
computer model output. An independent GP is also de-
ployed for the discrepancy term. Though σ 2

v is constant
at each terminal node the constants can vary across the
terminal nodes so heteroscedasticity is automatically in-
corporated.

6.2 Qualitative Inputs

Categorical (qualitative) variables are often present in
stochastic simulators, especially those that incorporate
characteristics of human behavior. While regression trees
are capable of dealing with categorical inputs (Broderick
and Gramacy, 2011, Gramacy and Taddy, 2010), GPs may
be more effective as surrogates for smooth simulator out-
put.

Qian, Wu and Wu (2008), Zhou, Qian and Zhou (2011)
and Chen, Wang and Yang (2013) describe ways to ex-
tend the kernels used for numerical inputs to incorporate
qualitative variables. Painting with a broad brush, their ap-
proaches take the correlation between two outputs y(xi)

and y(xj ) as the product of two correlation functions:
Cc(wi,wj ) dealing with the continuous inputs, w, and
Cq(zi, zj ) for the qualitative variables, z. A simple way
of building Cq takes

(6.1) Cq(wi,wj ) =
K∏

k=1

τk,wik,wjk
,

where K is the number of qualitative variables and
τk,wik,wjk

represents the correlation between wik and wjk .
One example of τk,wik,wjk

is

(6.2) τj,wik,wjk
= exp

{−(φik + φjk)I [wik �= wjk]},
where I is the indicator function (= 1 if its argument is
true, = 0 if false), and φ > 0. The cited references pro-
vide other ways of modeling τk,wik,wjk

. Alternatives also
exist; for example, Zhang et al. (2020) make use of latent
variables for qualitative models.

6.3 Optimization

A common experimental objective is to maximize an
output of the simulator, that is, to find an input xmax that
maximizes the output y(x). For minimization instead, re-
place y(x) with −y(x). Optimisation is usually a sequen-
tial process where successive xs are chosen to get closer
and closer to the optimal xmax, which is a sequential de-
sign problem (see Section 4). With stochastic simulators,
y(x) is random, and optima are less concretely defined
because the output is different every time the simulator is
run at the same x. As a consequence, interest usually lies
in maximizing a nonrandom quantity of interest, such as
the mean, M , or a quantity such as the qth quantile.

For deterministic simulators, Bayesian optimization
(Mockus, Tiesis and Zilinskas, 1978, Jones, Schonlau and
Welch, 1998) is a popular technique. An initial set of runs
is used to build a GP surrogate and new runs are cho-
sen by maximizing an “acquisition function” α(x). Iter-
atively choosing xnew = arg maxx α(x)) provides a pro-
gressively improved estimate for the maximum. A widely
used choice for α(x) is the expected improvement (EI):

(6.3) αEI(x) = E
[
max

(
y(x) − ymax,0

)]
.



82 BAKER ET AL.

Maximizing EI chooses the input xnew that maximizes the
expected increase in the maximum value, ymax, of already
observed runs. With y modeled by a GP,

(6.4)

αEI(x) = (
ymax − μN(x)

)
�

(
μN(x) − ymax

σN(x)

)

+ σN(x)φ

(
ymax − μN(x)

σN(x)

)
,

where μN(x) is the predictive mean of the GP, σN(x) its
standard deviation, φ is the standard normal density and
� the standard normal distribution function.

Alternative acquisition functions have generated ex-
tensive work on Bayesian optimization in recent years,
mostly in the machine learning literature. The probability
of improvement (Kushner, 1964) is an early example, and
the GP upper confidence bound (GP-UCB, Srinivas et al.
(2012)) considers homoscedastic simulator error. A re-
cent summary of Bayesian optimisation can be found in
Frazier (2018).

For stochastic simulators, the EI procedure can be
extended by replacing ymax with the maximum
estimated mean of currently run inputs, μmax =
maxi∈{1,...,N} μN(xi) (Vazquez et al., 2008). Alterna-
tively, one can seek improvement over the maximum esti-
mated mean of any possible input, maxx μN(x) (Gramacy
and Lee, 2011). In these cases, the σN(x) term must ex-
clude the σ 2

v (x) term. Implementation of this method is
provided in the hetGP package.

Alternative criteria for stochastic problems with con-
stant intrinsic noise are discussed and compared in
Picheny, Wagner and Ginsbourger (2013); with the above
method is referred to as the “plugin” method. An R pack-
age for implementing several of these choices is avail-
able in DiceOptim (Picheny, Ginsbourger and Rous-
tant, 2016, Picheny and Ginsbourger, 2014). Jalali, Van
Nieuwenhuyse and Picheny (2017) also do a similar com-
parison for heteroscedastic noise.

The related goal of level set estimation to find regions
where the output exceeds a threshold T can also be tar-
geted with sequential criteria similar to EI. A simple cri-
terion is maximum contour uncertainty (MCU), wherein
new points are chosen by weighting the sum of a point’s
proximity to T with its uncertainty. The method is imple-
mented in hetGP, and Lyu, Binois and Ludkovski (2018)
provides some discussion.

Optimization using Gaussian processes, specifically in
the presence of intrinsic variability that is potentially het-
eroscedastic (and potentially nonnormal) is an interesting
research question and possibly deserving of its own re-
view. Nonetheless, the references provided here should
provide a good introduction.

6.4 Sensitivity Analysis

Determining and measuring the effect of inputs on the
output is usually part of any simulator experiment. Do-
ing so assists scientific understanding of the system and
enables screening out potentially superfluous variables.
This goal has many related names: sensitivity analysis,
screening, variable selection, etc., but the overall objec-
tive is generally the same—summarize and measure the
influence of each input.

For deterministic simulators, Sobol indices (Sobol,
1993) are widely used. Probabilistic distributions are as-
sumed on the inputs of the simulator in order to represent
their range of possible values. Then a functional Analysis
of Variance (ANOVA) decomposition splits the variation
of the simulator output into multiple components, each
representing the individual contribution of an input vari-
able xj or combination of input variables. A Sobol index
is then computed as the percentage of the total simula-
tor output variation explained by a component. Key Sobol
indices include main effects (the percentage of variation
explained by the individual xj s alone) and the variation
explained by interactive additive effects with other inputs.
Computing the components takes large numbers of runs
but the use of surrogates make the calculations feasible
(Schonlau and Welch, 2006, Marrel et al., 2009). An en-
veloping discussion of sensitivity analysis is provided by
Oakley and O’Hagan (2004).

Two extensions of Sobol indices by Marrel et al. (2012)
and Hart, Alexanderian and Gremaud (2017) for stochas-
tic simulators yield the following expression for the
stochastic simulator:

(6.5) y(x) = y(x, εseed),

where x is the set of controllable inputs. The input εseed is
responsible for output stochasticity, standing in for intrin-
sic variability, and is sometimes called a seed variable. As
with a deterministic simulator, a probabilistic distribution
(typically uniform) is assumed to represent the range of
variation in controllable inputs.

In Marrel et al. (2012), the total variation in the mean of
the stochastic simulator is analyzed through a functional
ANOVA decomposition and Sobol indices are computed
based on the percentage of the total simulator variation
each component explains. The variation explained by the
seed variable εseed can also be computed, representing the
total variation explained by the intrinsic variance. Ad-
ditionally, a sensitivity analysis of the intrinsic variance
σ 2

N(x) can be conducted separately to gather information
on which input variables most impact the heteroscedastic-
ity.

Hart, Alexanderian and Gremaud (2017) assume the
simulator can be run at different inputs x with the same
seed εseed. Rather than building a joint surrogate for the
mean and variance, as described in Section 3.2, they build
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a separate surrogate for a number of seeds. For each seed,
they obtain a realization of each Sobol index, and by ag-
gregating the realizations, they obtain distributions for the
indices.

The extensive literature on model selection may have
counterparts that can be effective for stochastic simula-
tors, but a fully satisfactory approach even for determin-
istic simulators remains somewhat elusive.

7. CONCLUDING REMARKS

There are several key messages to be drawn from this
review, each pointing to open or new research questions:

Gaussian process surrogates. GPs are discussed exten-
sively because they provide a flexible way of allowing the
data to inform about the shape of the underlying process.
Moreover, they can be effective predictors and quanti-
fiers of uncertainty. Diagnosing shortcomings in a GP for
stochastic simulators (available in deterministic settings
(Bastos and O’Hagan, 2009)) is not yet well established.

As noted in Section 3, neural network (deep learning)
methods are in active use and under study, some of which
may, in combination with GPs, offer promising research
directions (Schultz and Sokolov, 2018).

Additionally, it can be difficult to effectively capture
nonnormal variability. Doing so with as few simulations
as possible, while also properly quantifying the various
uncertainties, is likely to be an important research direc-
tion for stochastic simulator analysis. The wider quantile
regression literature is likely a good starting point.

Design. Stochastic simulators differ from determinis-
tic ones because they require much larger sample sizes
and permit the use of replicates, whose treatment is gen-
erally ad hoc. This leads to the questions raised in Sec-
tion 4, forming a direction of important research. Design
size rules of thumb, useful even if imperfect, exist for de-
terministic simulators (Loeppky, Sacks and Welch, 2009),
but are lacking for stochastic simulators.

Calibration. Accounting for model discrepancy in cal-
ibration is critical but there is no obvious “one-size-fits-
all” method. A broad empirical comparison is needed with
guidance about which strategies are effective under which
conditions. Assessing the effectiveness of different meth-
ods can be challenging (see McKinley et al., 2018, for one
comparison between ABC and HM), but sorely needed.

Simulator complexity. For complex stochastic simula-
tors, it may not be feasible to obtain enough runs. In some
instances, the simulator can be replaced with a less com-
plex one (e.g., Molina, Bayarri and Berger, 2005) that
captures key features and permits adequate numbers of
simulations. Another path, coupling stochastic simulators
with deterministic simulators has been explored as a way
to deal with low simulation budgets (Baker, Challenor
and Eames, 2020). Multifidelity modeling, where multi-
ple simulators of varying complexity are coupled together

(Kennedy and O’Hagan, 2000, Kennedy, Henderson and
Wilson, 2020) is a promising solution where possible.

In a similar vein, certain outputs may be less noisy than
others, and the modeling of the less-noisy outputs can
improve the modeling of the noisier ones. For example,
Wang and Ng (2020) use the expectation of a simulator
to improve the estimation of noisier quantiles. This is re-
lated to the wider variance reduction literature, which has
a long history (Barton, Nakayama and Schruben, 2017).
Variance reduction has been applied in a number of ex-
amples but its use in ABMs is not apparent, perhaps due
to the profusion of stochastic elements in an ABM. Fixing
the initial seed in a stochastic simulator has played a role
in sensitivity analysis (see Section 6.4), but leveraging in-
formation about the nature of the intrinsic randomness for
wider purposes is an open problem.

This review strives to raise awareness of existing tools
and strategies for treating stochastic simulators and pro-
vide a starting point for practitioners interested in utiliz-
ing up-to-date statistical approaches. Despite the prob-
lems being pervasive and challenging, there is a short-
age of statistical research in this field. The problems pose
computational and technical questions, as well as theoret-
ical and philosophical ones. Current solutions are often
capable, but there is a lack of comprehensive compari-
son between different solutions, and a lack of testing re-
garding their generalizability to complex situations (such
as very large data sets). The hope is that the review pro-
vokes statistical researchers to engage the open questions
discussed, and for practitioners to make use of the tools
which are available.

APPENDIX—OCEAN TRUTH

Throughout, reference to plots of the “truth” of the
ocean model is made. These plots are presented in Fig-
ure 8, as well as in the supplementary material, for conve-
nience.
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FIG. 8. Ocean example: The “true” mean and standard deviation for the ocean model, for 500 different sites.
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