Publications

2022

[1] E. Baker, P. Barbillon, A. Fadikar, et al. “Analyzing Stochastic Computer Models: A Review with Opportunities”. In: Statistical Science 37.1 (2022), pp. 64 - 89. DOI: 10.1214/21-STS822.

[2] O. C. Villena, S. J. Ryan, C. C. Murdock, et al. “Temperature impacts the transmission of malaria parasites by Anopheles gambiae and Anopheles stephensi mosquitoes”. In: Ecology (In Press) (2022). <URL: https://www.biorxiv.org/content/10.1101/2020.07.08.194472v2.abstract>.


2021

[1] F. El Moustaid, Z. Thornton, H. Slamani, et al. “Predicting temperature-dependent transmission suitability of bluetongue virus in livestock”. In: Parasites & Vectors 14.1 (2021), pp. 1-14.

[2] Z. Gajewski, L. A. Stevenson, D. A. Pike, et al. “Predicting the growth of the amphibian chytrid fungus in varying temperature environments”. In: Ecology and Evolution 11 (2021), pp. 17920-17931.

[3] S. J. Ryan, C. J. Carlson, B. Tesla, et al. “Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050”. In: Global Change Biology 27.1 (2021), pp. 84-93.

[4] B. Zhang, R. B. Gramacy, L. Johnson, et al. “Batch-sequential design and heteroskedastic surrogate modeling for delta smelt conservation”. In: Annals of Applied Statistics (Accepted) (2021). <URL: https://arxiv.org/abs/2010.06515>.


2020

[1] L. J. Cator, L. R. Johnson, E. A. Mordecai, et al. “The role of vector trait variation in vector-borne disease dynamics”. In: Frontiers in Ecology and Evolution 8 (2020), p. 189.

[2] K. Miazgowicz, M. Shocket, S. Ryan, et al. “Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vector Anopheles stephensi”. In: Proceedings of the Royal Society B 287.1931 (2020), p. 20201093.

[3] M. S. Shocket, A. B. Verwillow, M. G. Numazu, et al. “Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 C and 26 C”. In: Elife 9 (2020), p. e58511.


2019

[1] S. R. Adapa, R. A. Taylor, C. Wang, et al. “Plasmodium vivax readiness to transmit: implication for malaria eradication”. In: BMC Systems Biology 13.1 (2019), p. 5.

[2] P. H. Boersch-Supan and L. R. Johnson. “Two case studies detailing Bayesian parameter inference for dynamic energy budget models”. In: Journal of Sea Research 143 (2019), pp. 57-69.

[3] S. C. Burgan, S. S. Gervasi, L. R. Johnson, et al. “How individual variation in host tolerance affects competence to transmit parasites”. In: Physiological and Biochemical Zoology 92.1 (2019), pp. 49-57.

[4] L. M. Childs, F. El Moustaid, Z. Gajewski, et al. “Linked within-host and between-host models and data for infectious diseases: a systematic review”. In: PeerJ 7 (2019), p. e7057.

[5] F. El Moustaid and L. R. Johnson. “Modeling Temperature Effects on Population Density of the Dengue Mosquito Aedes aegypti”. In: Insects 10.11 (2019), p. 393.

[6] F. El Moustaid, S. J. Lane, I. T. Moore, et al. “A Mathematical Modeling Approach to The Cort-Fitness Hypothesis”. In: Integrative Organismal Biology 1.1 (2019), p. obz019.

[7] M. A. Johansson, K. M. Apfeldorf, S. Dobson, et al. “An open challenge to advance probabilistic forecasting for dengue epidemics”. In: Proceedings of the National Academy of Sciences 116.48 (2019), pp. 24268-24274.

[8] E. A. Mordecai, J. M. Caldwell, M. K. Grossman, et al. “Thermal biology of mosquito-borne disease”. In: Ecology Letters 22.10 (2019), pp. 1690-1708.

[9] S. J. Ryan, C. J. Carlson, E. A. Mordecai, et al. “Global expansion and redistribution of Aedes-borne virus transmission risk with climate change”. In: PLoS Neglected Tropical Diseases 13.3 (2019), p. e0007213.

[10] R. A. Taylor, S. J. Ryan, C. A. Lippi, et al. “Predicting the fundamental thermal niche of crop pests and diseases in a changing world: a case study on citrus greening”. In: Journal of Applied Ecology 56.8 (2019), pp. 2057-2068.


2018

[1] P. H. Boersch-Supan, L. R. Johnson, R. A. Phillips, et al. “Surface temperatures of albatross eggs and nests”. In: Emu-Austral Ornithology 118.2 (2018), pp. 224-229.

[2] D. J. Civitello, H. Fatima, L. R. Johnson, et al. “Bioenergetic theory predicts infection dynamics of human schistosomes in intermediate host snails across ecological gradients”. In: Ecology Letters 21.5 (2018), pp. 692-701.

[3] L. R. Johnson, R. B. Gramacy, J. Cohen, et al. “Phenomenological forecasting of disease incidence using heteroskedastic Gaussian processes: a dengue case study”. In: The Annals of Applied Statistics 12.1 (2018), pp. 27-66.


2017

[1] L. R. Johnson, P. H. Boersch-Supan, R. A. Phillips, et al. “Changing measurements or changing movements? Sampling scale and movement model identifiability across multiple generations of biologging technology”. In: Ecology and Evolution 7.22 (2017), pp. 9257-9266.

[2] E. A. Mordecai, J. M. Cohen, M. V. Evans, et al. “Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models”. In: PLoS Neglected tTopical Diseases 11.4 (2017), p. e0005568.

[3] J. Voyles, L. R. Johnson, J. Rohr, et al. “Diversity in growth patterns among strains of the lethal fungal pathogen Batrachochytrium dendrobatidis across extended thermal optima”. In: Oecologia 184.2 (2017), pp. 363-373.


2016

[1] P. H. Boersch-Supan, S. J. Ryan, and L. R. Johnson. “deBInfer: Bayesian inference for dynamical models of biological systems in R”. In: Methods in Ecology and Evolution 8.4 (2016), pp. 511-518.

[2] R. A. Taylor, E. Mordecai, C. A. Gilligan, et al. “Mathematical models are a powerful method to understand and control the spread of Huanglongbing”. In: PeerJ 4 (2016), p. e2642.

[3] R. A. Taylor, S. J. Ryan, J. S. Brashares, et al. “Hunting, food subsidies, and mesopredator release: the dynamics of crop-raiding baboons in a managed landscape”. In: Ecology 97.4 (2016), pp. 951-960.


2013 – 2015

[1] L. R. Johnson, T. Ben-Horin, K. D. Lafferty, et al. “Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach”. In: Ecology 96.1 (2015), pp. 203-213.

[2] L. R. Johnson, K. D. Lafferty, A. McNally, et al. “Mapping the distribution of malaria: current approaches and future directions”. In: Analyzing and modeling spatial and temporal dynamics of infectious diseases (2014), pp. 189-209.

[3] L. R. Johnson, L. Pecquerie, and R. M. Nisbet. “Bayesian inference for bioenergetic models”. In: Ecology 94.4 (2013), pp. 882-894.

[4] E. A. Mordecai, K. P. Paaijmans, L. R. Johnson, et al. “Optimal temperature for malaria transmission is dramatically lower than previously predicted”. In: Ecology letters 16.1 (2013), pp. 22-30.

[5] S. J. Ryan, T. Ben-Horin, and L. R. Johnson. “Malaria control and senescence: the importance of accounting for the pace and shape of aging in wild mosquitoes”. In: Ecosphere 6.9 (2015), pp. 1-13.

[6] S. J. Ryan, A. McNally, L. Johnson, et al. “Changing physiological suitability limits of malaria transmission in Africa under climate change”. In: Ecol Lett 16 (2014), pp. 22-30.

[7] S. Ryan, A. McNally, L. Johnson, et al. “Mapping Physiological Suitability Limits for Malaria in Africa Under Climate Change”. In: Vector Borne and Zoonotic Diseases 15.12 (2015), pp. 718-725.

[8] J. Voyles, L. R. Johnson, C. J. Briggs, et al. “Experimental evolution alters the rate and temporal pattern of population growth in Batrachochytrium dendrobatidis, a lethal fungal pathogen of amphibians”. In: Ecology and evolution 4.18 (2014), pp. 3633-3641.


2009 – 2012

[1] L. R. Johnson. “Implications of dispersal and life history strategies for the persistence of Linyphiid spider populations”. In: Ecological modelling 221.8 (2010), pp. 1138-1147.

[2] L. R. Johnson. “Microcolony and biofilm formation as a survival strategy for bacteria”. In: Journal of theoretical biology 251.1 (2008), pp. 24-34.

[3] L. R. Johnson and C. J. Briggs. “Parameter inference for an individual based model of chytridiomycosis in frogs”. In: Journal of theoretical biology 277.1 (2011), pp. 90-98.

[4] L. R. Johnson and M. Mangel. “Life histories and the evolution of aging in bacteria and other single-celled organisms”. In: Mechanisms of ageing and development 127.10 (2006), pp. 786-793.

[5] D. Merl, L. R. Johnson, R. B. Gramacy, et al. “A statistical framework for the adaptive management of epidemiological interventions”. In: PloS One 4.6 (2009), p. e5807.

[6] D. Merl, L. R. Johnson, R. B. Gramacy, et al. “amei: an R package for the Adaptive Management of Epidemiological Interventions”. In: Journal of Statistical Software 36.6 (2010), pp. 1-32.

[7] R. M. Nisbet, E. McCauley, and L. R. Johnson. “Dynamic energy budget theory and population ecology: lessons from Daphnia”. In: Philosophical Transactions of the Royal Society B: Biological Sciences 365.1557 (2010), pp. 3541-3552.

[8] L. Pecquerie, L. R. Johnson, S. A. Kooijman, et al. “Analyzing variations in life-history traits of Pacific salmon in the context of Dynamic Energy Budget (DEB) theory”. In: Journal of Sea Research (2011).

[9] J. Voyles, L. R. Johnson, C. J. Briggs, et al. “Temperature alters reproductive life history patterns in Batrachochytrium dendrobatidis, a lethal pathogen associated with the global loss of amphibians”. In: Ecology and evolution 2.9 (2012), pp. 2241-2249.


Pre-Prints and Working Papers

[1] J. W. Smith, L. R. Johnson, and R. Q. Thomas. “Assessing Ecosystem State Space Models: Identifiability and Estimation”. In: arXiv preprint arXiv:2110.08967 (2021).


Reuse

Text and figures are licensed under Creative Commons Attribution CC BY 4.0. The figures that have been reused from other sources don't fall under this license and can be recognized by a note in their caption: "Figure from ...".